R/calculate_noise_threshold_method_statistics.R
calculate_noise_threshold_method_statistics.Rd
This function is used to tabulate and compare different combinations of similarity threshold and method to calculate the noise threshold for a given expression matrix.
calculate_noise_threshold_method_statistics( expression, similarity.threshold.sequence = 0.25, method.chosen.sequence = noisyr::get_methods_calculate_noise_threshold(), dump.stats = NULL, ... )
expression | either an expression summary (as calculated by
|
---|---|
similarity.threshold.sequence | similarity (correlation or inverse distance) threshold(s) to be used to find corresponding noise threshold; can be a single value or a numeric vector; the default, 0.25 is usually suitable for the Pearson correlation (the default similarity measure) |
method.chosen.sequence | methods to use to calculate the noise thresholds,
must be a subset of |
dump.stats | name of csv to export different thresholds calculated (optional) |
... | other arguments (for the boxplot methods) passed to |
A tibble containing information on noise thresholds calculated using the input similarity thresholds and methods (optionally written in a csv file). The columns list the chosen method and similarity threshold, the minimum, mean, coefficient of variation, and maximum of the noise thresholds, and all the noise thresholds concatenated as a string.
expression.summary <- calculate_expression_similarity_counts( expression.matrix = matrix(1:100, ncol=5), method = "correlation_pearson", n.elements.per.window = 3)#>#>#>#>#>#>#>#>#>#>#>calculate_noise_threshold_method_statistics(expression.summary)#> # A tibble: 10 x 8 #> approach method similarity.thres~ noise.threshold.~ noise.threshold.~ #> <chr> <chr> <dbl> <dbl> <dbl> #> 1 Density_b~ No_normalis~ 0.25 0 0 #> 2 Density_b~ RPM_normali~ 0.25 0 0 #> 3 Density_b~ Quantile_no~ 0.25 0 0 #> 4 Line_plot No_smoothing 0.25 2 42 #> 5 Line_plot loess10_smo~ 0.25 2 42 #> 6 Line_plot loess25_smo~ 0.25 2 42 #> 7 Line_plot loess50_smo~ 0.25 2 42 #> 8 Boxplot Median 0.25 1 1 #> 9 Boxplot IQR 0.25 1 1 #> 10 Boxplot Quant5 0.25 1 1 #> # ... with 3 more variables: noise.threshold.coefficient.of.variation <dbl>, #> # noise.threshold.max <dbl>, noise.thresholds.all <chr>