Skip to contents

This function is identical to the noisyr::noisyr_counts function, with the addition of the option to print a line plot of the similarity against expression for all samples.

Usage

noisyr_counts_with_plot(
  expression.matrix,
  n.elements.per.window = NULL,
  optimise.window.length.logical = FALSE,
  similarity.threshold = 0.25,
  method.chosen = "Boxplot-IQR",
  ...,
  output.plot = FALSE
)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to samples

n.elements.per.window

number of elements to have in a window passed to calculate_expression_similarity_counts(); default 10% of the number of rows

optimise.window.length.logical

whether to call optimise_window_length to try and optimise the value of n.elements.per.window

similarity.threshold, method.chosen

parameters passed on to calculate_noise_threshold; they can be single values or vectors; if they are vectors optimal values are computed by calling calculate_noise_threshold_method_statistics and minimising the coefficient of variation across samples; all possible values for method.chosen can be viewed by get_methods_calculate_noise_threshold

...

optional arguments passed on to noisyr::noisyr_counts()

output.plot

whether to create an expression-similarity plot for the noise analysis (printed to the console); default is FALSE

Value

The denoised expression matrix.

Examples

expression.matrix <- as.matrix(read.csv(
  system.file("extdata", "expression_matrix.csv", package = "bulkAnalyseR"), 
  row.names = 1
))[1:10, 1:4]
expression.matrix.denoised <- noisyr_counts_with_plot(expression.matrix)
#> >>> noisyR counts approach pipeline <<<
#> The input matrix has 10 rows and 4 cols
#>     number of genes: 10
#>     number of samples: 4
#> Calculating the number of elements per window
#>     the number of elements per window is 1
#>     the step size is 1
#>     the selected similarity metric is correlation_pearson
#>   Working with sample 1
#>   Working with sample 2
#>   Working with sample 3
#>   Working with sample 4
#> Similarity calculation produced too many NAs, returning zero...
#> Denoising expression matrix...
#>     removing noisy genes
#>     adjusting matrix
#> >>> Done! <<<