svm.Rd
SVM
svm( data_train, data_test, kernel = "linear", degree = 3, poly = 0, includeplot = FALSE )
data_train | Training set: dataframe containing classification column and all other columns features. This is the dataset on which the decision tree model is trained. |
---|---|
data_test | Test set: dataframe containing classification column and all other columns features. This is the dataset on which the decision tree model in tested. |
kernel | Type of kernel to use for SVM model (default:linear) |
degree | Degree for kernel used (in polynomial or radial case) |
poly | Binary parameter stating whether the chosen kernel is polynomial of degree greater than 1 (default:0) |
includeplot | Show performance scatter plot (default:FALSE) |
List containing performance percentages, accessed using training (training accuracy), test (test accuracy), trainsensitivity, testsensitivity, trainspecificity, testspecificity.
data_train = data.frame( classification=as.factor(c(1,1,0,0,1,1,0,0,1,1)), A=c(1,1,1,0,0,0,1,1,1,0), B=c(0,1,1,0,1,1,0,1,1,0), C=c(0,0,1,0,0,1,0,0,1,0)) data_test = data.frame( classification=as.factor(c(1,1,0,0,1,1,1,0)), A=c(0,0,0,1,0,0,0,1), B=c(1,1,1,0,0,1,1,1), C=c(0,0,1,1,0,0,1,1)) svm(data_train,data_test,kernel='radial',degree=3)#> $test #> [1] 0.625 #> #> $testsensitivity #> [1] 0 #> #> $testspecificity #> [1] 0 #> #> $training #> [1] 0.6 #> #> $trainsensitivity #> [1] 0 #> #> $trainspecificity #> [1] 0 #>svm(data_train,data_test,kernel='sigmoid')#> $test #> [1] 0.625 #> #> $testsensitivity #> [1] 0 #> #> $testspecificity #> [1] 0 #> #> $training #> [1] 0.6 #> #> $trainsensitivity #> [1] 0 #> #> $trainspecificity #> [1] 0 #>svm(data_train,data_test,kernel='poly',degree=4,poly=1)#> $test #> [1] 0.625 #> #> $testsensitivity #> [1] 0 #> #> $testspecificity #> [1] 0 #> #> $training #> [1] 0.6 #> #> $trainsensitivity #> [1] 0 #> #> $trainspecificity #> [1] 0 #>