Skip to contents

Plot final PAC values across range of k to find optimal number of clusters.

Usage

pac_landscape(pac_res, n_shade = max(pac_res$iteration)/5)

Arguments

pac_res

The data.frame output by consensus_cluster.

n_shade

The PAC values across the last n_shade iterations will be shaded to illustrate the how stable the PAC score is.

Value

A ggplot2 object with the final PAC vs k plot. A local minimum in the landscape indicates an especially stable value of k.

Examples

pac.res <- consensus_cluster(iris[, 1:4], k_max = 20)
#> Calculating consensus clustering
pac_landscape(pac.res)