Create monocle object from a ClustAssess object
Source:R/convert.R
create_monocle_from_clustassess.Rd
Use the object generated using the ClustAssess
automatic_stability_assessment
function to create a Monocle object
which has the stable number of clusters.
Usage
create_monocle_from_clustassess(
normalized_expression_matrix,
count_matrix = NULL,
clustassess_object,
metadata_df,
stable_feature_type,
stable_feature_set_size,
stable_clustering_method,
stable_n_clusters = NULL,
use_all_genes = FALSE
)
Arguments
- normalized_expression_matrix
The normalized expression matrix having genes on rows and cells on columns.
- count_matrix
The count matrix having genes on rows and cells on columns. If NULL, the normalized_expression_matrix will be used.
- clustassess_object
The output of the
automatic_stability_assessment
.- metadata_df
The metadata dataframe having the cell names as rownames. If NULL, a dataframe with a single column named
identical_ident
will be created.- stable_feature_type
The feature type which leads to stable clusters.
- stable_feature_set_size
The feature size which leads to stable clusters.
- stable_clustering_method
The clustering method which leads to stable clusters.
- stable_n_clusters
The number of clusters that are stable. If NULL, all the clusters will be provided. Defaults to
NULL
.- use_all_genes
A boolean value indicating if the expression matrix should be truncated to the genes used in the stability assessment. Defaults to
FALSE
.
Value
A Monocle object of the expression matrix, having the stable number of clusters identified by ClustAssess.
Examples
if (FALSE) { # \dontrun{
set.seed(2024)
# create an already-transposed artificial expression matrix
expr_matrix <- matrix(
c(runif(20 * 10), runif(30 * 10, min = 3, max = 4)),
nrow = 10, byrow = FALSE
)
colnames(expr_matrix) <- as.character(seq_len(ncol(expr_matrix)))
rownames(expr_matrix) <- paste("feature", seq_len(nrow(expr_matrix)))
autom_object <- automatic_stability_assessment(
expression_matrix = expr_matrix,
n_repetitions = 3,
n_neigh_sequence = c(5),
resolution_sequence = c(0.1, 0.5),
features_sets = list(
"set1" = rownames(expr_matrix)
),
steps = list(
"set1" = c(5, 7)
),
umap_arguments = list(
# the following parameters have been modified
# from the default values to ensure that the function
# will run under 5 seconds
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3
),
n_top_configs = 1,
algorithms_clustering_assessment = 1,
save_temp = FALSE,
verbose = FALSE
)
# uncomment to create the monocle object
# mon_obj <- create_monocle_from_clustassess(
# normalized_expression_matrix = expr_matrix,
# clustassess_object = autom_object,
# metadata = NULL,
# stable_feature_type = "set1",
# stable_feature_set_size = "5",
# stable_clustering_method = "Louvain"
# )
} # }